

Heavy Ion Testing of Freescale Nano-Crystal Nonvolatile Memory*

T.R. Oldham, ¹ M. Suhail, ² E. Prinz, ² P. Kuhn, ² H. Kim, ³ and

K.A. LaBel4

1. QSS Group Inc.

2. Freescale Semiconductor, Inc.

3. Jackson & Tull Aerospace, Inc.

4. NASA GSFC

Non-volatile Memory Technology Symposium 15-17 Nov 2004

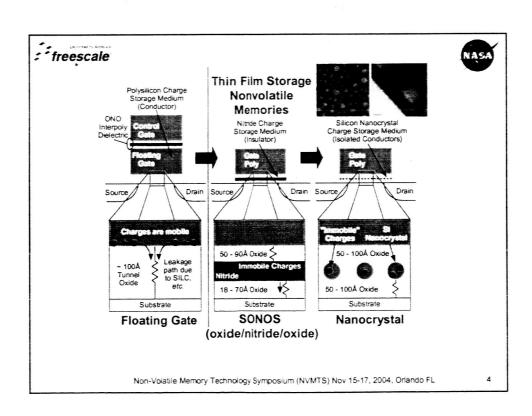
*Sponsored by NASA Electronic Parts and Packaging (NEPP) program, Defense Threat Reduction Agency, and Freescale Semiconductor

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

Outline

- Introduction
- Description of Devices
- Test Procedure
- Experimental Results
- · Analysis and Discussion
- Conclusions

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL



Introduction

- Floating Gate (FG) non-volatile memories (NVM) are widely used in space systems
 - Commercially available
- · However,
 - FG has been shown to be sensitive to ionizing radiation
 - Concern that FG cannot be scaled below 100 nm for reliability issues
- Nanocrystal (NC) memory has the potential to
 - Scale <<100 nm with increased reliability at 90 nm and below, as well as,
 - Increase radiation resistance

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

Nanocrystal Storage for Embedded NVM

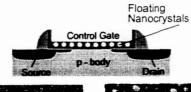
- Write/Erase Voltage Reduction
 - ±6...±7V write/erase voltages instead of ±9V
 - 50% periphery area reduction
- No SILC (stress induced leakage current)related extrinsic reliability issue
- · No gate or drain coupling effect
- Process Simplicity

- Floating gate:

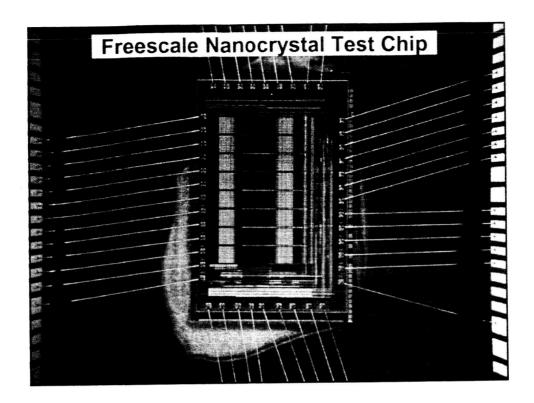
adds 6-11 masking steps

- Nanocrystal:

adds 4 masking steps

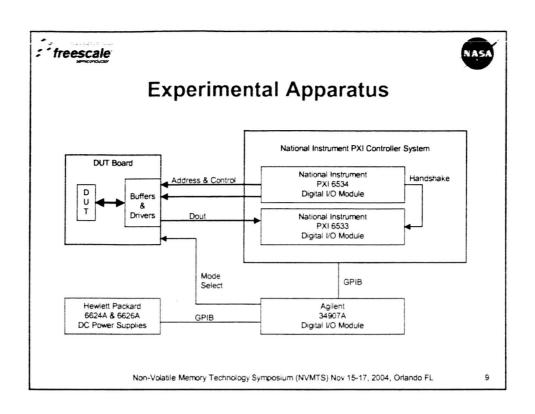

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

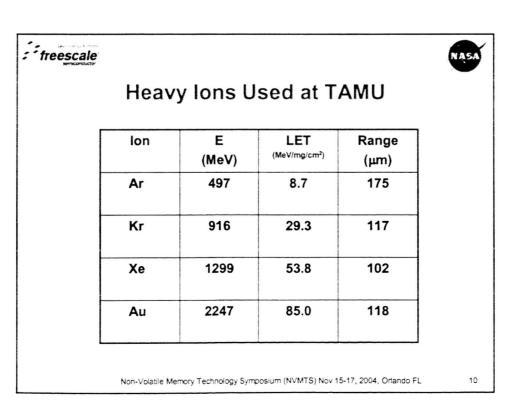
5


Description of Devices

- Write by CHE (channel hot electron)injection
- FN (Fowler-Nordheim)Erase
- Read by detecting V_T difference (zero V_T is about 2V greater than one V_T)
- Nominal 6V supply

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

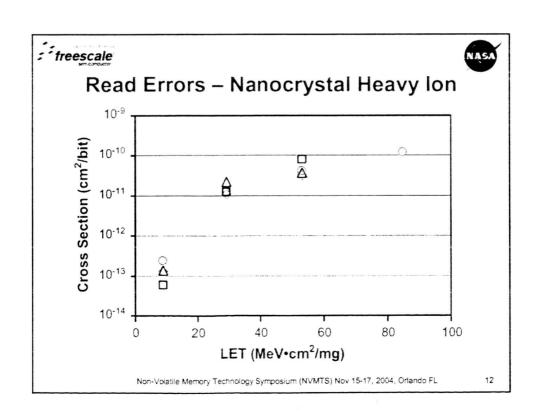


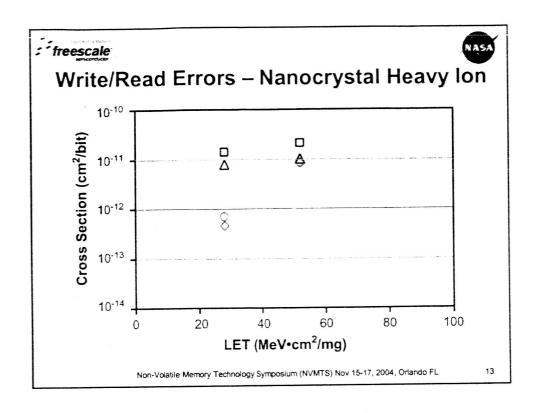


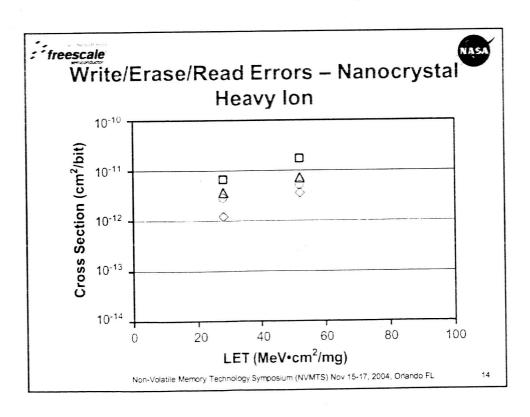
Experimental Procedure

- Devices under test (DUTs)
 - 130 nm CMOS, part of 90 nm development process
 - Nanocrystal
 - 6V Vdd
 - 0.1V Vt margin
 - FG
 - (9V Vdd)
 - ~2V Vt margin
- Exposures
 - Heavy ion at Texas A&M University (TAMU) Cyclotron
 - 15 MeV/nucleon cocktail
 - Naval Research Laboratories' Pulsed laser
- Test modes
 - Static, dynamic read, dynamic write, dynamic erase tests
- All tests performed at room temperature and nominal Vdd, frequency ~25 kHz

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

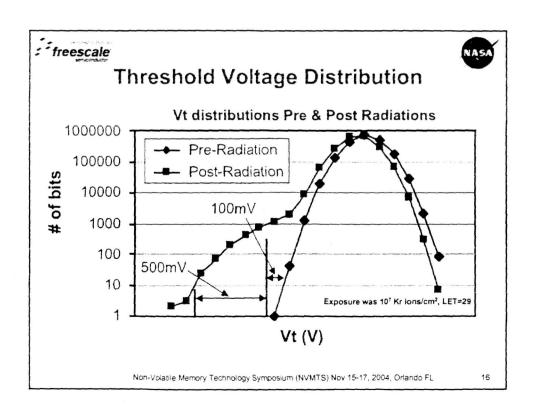





Heavy Ion Results - Nanocrystal

- · Errors observed in all test modes
 - All errors appear to be static errors, even in dynamic tests
 - · Cell values changed and remained at values until re-written
- · Fewer errors observed in write and erase tests
 - Errors are being overwritten during exposures
- All errors are zeroes turned into ones (loss of stored electrons)
- · Error rate depends on voltage margin
 - 0.1 V used for this test
 - Production chip would have >> margin
- High current state observed, suggestive of latchup, but parts remained fully functional
- · No single event functional interrupts (SEFIs) noted
- · Limited test on FG
 - Linear Energy Transfer (LET) of 29 Mev*cm²/mg: no SEE observed

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL



Laser Test Results - Nanocrystal and FG

- · No bit errors observed
 - Laser will not produce ionization in SiO₂
- No errors observed in control circuits on NC parts
- Apparent latchup in FG parts
 - Possibly due to higher voltages applied
 - Devices could not be erased after exposure, including ultraviolet (UV) erase

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

Discussion

- Charge loss, from observed V_T shifts, is 1-2 orders of magnitude greater than positive charge deposited by ion
 - Micro-dose (alone) not sufficient to explain observed charge loss
- Cellere et al. (IEEE TNS Dec 2002) reported similar results for FG cells—presented three possible models, but found problems with all three
 - Models should not apply to NC arrays, even if problems were resolved for FG—single conducting defect should not drain charge from whole array
- Underlying mechanisms not yet explained

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL

17

Conclusions

- Nanocrystal memories are promising for space applications
- Bit error rate is generally better than previous reports for FG flash NVM
- Only static errors (loss of electrons) observed
- No SEFI
- · No unambiguous evidence for latchup

Non-Volatile Memory Technology Symposium (NVMTS) Nov 15-17, 2004, Orlando FL